If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2-15m=0
a = 6; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·6·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*6}=\frac{0}{12} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*6}=\frac{30}{12} =2+1/2 $
| 2(2x-7)=4x+4 | | (X+2)(x+5)=(x+3)^2 | | 2x-8+5x-20=4x+2 | | n2+10n+24=0 | | 4x2-20X-2=0 | | 2x+18=x+23 | | 12x2+3x-9=0 | | 7x+23=5x+75 | | 2(a-3)-5a+3=12 | | 30+90+3y=180 | | 3x-66=69;x= | | 50=xxx-5 | | x=50/x-5 | | 11m+4=3(m+8) | | 3r2+32r-48=0 | | 3r^2+32r-48=0 | | 1/z-1/2z-1/5z=10/(z+1) | | (a+8)^2+2a=7 | | (3x-7)+(x+3)=180 | | 3-4a=5-3a | | P+q=2 | | 7k-2=13k+3 | | 80–5(y-1)=0 | | 2x+20+x+30=140 | | 4y=7y-9 | | (2x3)+(3x4)= | | a=2(0.25)/30² | | y2-8y=-7 | | -2(2x-1)=4(4-x)-14 | | .75x=-3 | | 3^1-2n=3^1-3n | | 4k+17=6k-11 |